Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338745

RESUMO

Cryopreservation is an essential step for utilizing various cell types for biological research and medical purposes. At the same time, there is a lack of data on the effect of cryopreservation, especially when prolonged, on the karyotype of cells. In the present work, we analyzed the genetic stability of cells subjected to a cryopreservation procedure. The objects were immortalized Chinese hamster lung fibroblasts (CHL V-79 RJK line) and human endometrial mesenchymal stem/stromal cells (eMSCs). We showed that short-term cryopreservation in liquid nitrogen for up to 6 months did not affect the karyotype stability of CHL V-79 RJK and eMSCs. On the contrary, karyotyping of G-banded metaphase chromosomes in cells underwent 10-year cryopreservation, which revealed genomic instability in both cell lines associated with the variability of chromosome number in cells, random chromosomal rearrangements, and condensation disorder in homologs. In addition, we found out that long-term cryopreservation of eMSCs does not affect the expression of their typical surface markers and morphology, but results in a significant reduction in proliferative potential and early manifestation of cellular senescence features upon eMSCs culturing. Thus, we concluded that the long-term cryopreservation of cells of different types and biological origin can lead to irreversible changes of their karyotype and acceleration of cellular senescence.


Assuntos
Criopreservação , Instabilidade Genômica , Cricetinae , Animais , Humanos , Cariotipagem , Linhagem Celular , Cariótipo , Cricetulus
2.
Biochem Biophys Res Commun ; 619: 22-26, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35728280

RESUMO

Tri-dimensional (3D) cell aggregates or spheroids are considered to be closer to physiological conditions than traditional 2D cell culture. Mesenchymal stem cells (MSCs) assembling in spheroids have increased the survival of transplanted cells. The organization of stem cells in 3D culture affects cell microenvironment and their mechanical properties. The regulation of the biological processes that maintain crucial physiological reactions of MSCs is closely related to the functioning of ion channels. The pattern of expression, role and regulatory mechanisms of ion channels could be significantly different in 3D compared to 2D culture, and, thus, needed to be properly analyzed on the level of ionic currents. Electrophysiological data on the features of ion channels functioning in 3D cell culture models are currently very limited in the literature. This gap of knowledge may be associated with technical difficulties that exist when researchers try to apply the standard patch clamp method for the registration of ion channels in cells aggregated in spheroids. In this regard, our study focuses on solving emerging technical difficulties and presents an example of their successful solution. Here, we developed a specific approach and have recorded the activity of mechanosensitive stretch-activated ion channels (SACs) in endometrial MSCs (eMSCs) assembled in spheroids. Moreover, we observed functional interplay of SACs with potassium channels of big conductance (BK) in the plasma membrane of eMSC spheroids consistently to revealed earlier in routine 2D cultured cells. Additionally, we observed a significant decrease in the frequency of SACs activation in spheroids that may indicate the differences in the level of functional expression of channels in 3D culture comparing to 2D culture of eMSCs.


Assuntos
Canais Iônicos , Células-Tronco Mesenquimais , Células Cultivadas , Feminino , Humanos , Canais Iônicos/metabolismo , Técnicas de Patch-Clamp , Células-Tronco
3.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769282

RESUMO

In our previous study, we found that high doses of several substances with antioxidant capacities (Tempol, resveratrol, diphenyleneiodonium) can cause genotoxic stress and induce premature senescence in the human mesenchymal stem cells (MSCs). Here, using whole-transcriptome analysis, we revealed the signs of endoplasmic reticulum stress and unfolded protein response (UPR) in MSCs stressed with Tempol and resveratrol. In addition, we found the upregulation of genes, coding the UPR downstream target APC/C, and E3 ubiquitin ligase that regulate the stability of cell cycle proteins. We performed the molecular analysis, which further confirmed the untimely degradation of APC/C targets (cyclin A, geminin, and Emi1) in MSCs treated with antioxidants. Human fibroblasts responded to antioxidant applications similarly. We conclude that endoplasmic reticulum stress and impaired DNA synthesis regulation can be considered as potential triggers of cell damage and premature senescence stimulated by high-dose antioxidant treatments.


Assuntos
Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular , Humanos
4.
Cells ; 10(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064429

RESUMO

Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.


Assuntos
Carcinogênese/genética , Cromotripsia , Animais , Humanos
5.
J Pers Med ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070346

RESUMO

Endometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities. In this work, we refined a method of spheroid formation, which makes it possible to obtain well-formed aggregates with a narrow size distribution both at early eMSC passages and after prolonged cultivation. The use of serum-free media allows this method to be used for the production of spheroids for clinical purposes. Wound healing experiments on animals confirmed the high therapeutic potency of the produced eMSC spheroids in comparison to the monolayer eMSC culture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...